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Executive Summary Experimental Design

Background

❖ A novel ANN-based prediction framework is

presented in this work to predict the life and

residual strength of polymer composites under

fatigue loading.

❖ The framework incorporates in-situ dielectric data

acquired from Dielectric Spectroscopy and

stiffness degradation monitored through Fiber

Optic Sensors.

❖ The prediction framework consists of two coupled

ANN-based multilayer perceptron models that can

predict the life and residual strength (RS) of the

composite part with high accuracy.

❖ This study highlights the effectiveness of using in-

situ dielectric permittivity data and FOS-based

FBGs to improve the prediction of the life and

residual strength of composite parts under fatigue

loading.

❖ Fiber-reinforced polymer (FRP) composite
structures are widely used in Aerospace industries
but have unpredictable damage progression and
failure behavior under fatigue loading.

❖ Characteristic Damage State (CDS) is an indicator for
severe damage, leading to stiffness degradation,
but not necessarily loss of strength. (Figure 1)

❖ Traditional maintenance approaches are becoming
obsolete, and artificial intelligence (AI) based
predictive models can be trained to identify damage
precursors from extensive sensor data throughout
the service life of a composite.

❖ Different AI models have been developed, but ANN-
based algorithms have been more efficient and
accurate for modeling damage and prognostics [2].

❖ Dielectric state variables, analyzed using the
Dielectric Spectroscopy (DS) technique, can be used
as in-situ indicators of damage development during
fatigue and coupled with ANN architecture for
Prognostic Health Monitoring.

A. Test Material Preparation

❖ Composite laminates were made using unidirectional epoxy
impregnated E-glass fiber prepregs with a quasi-isotropic
laminate stacking sequence.

❖ The out-of-autoclave manufacturing process was used to cure
the laminates at 135°C

Analysis of Material State Variables

Prediction Performance
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Conclusions and Core Findings

❖ Stiffness degradation and dielectric evolution shows
similar pattern as reported in literature. [3]

❖ The acceleration of mechanical and dielectric state
variables following a similar trend until about 50% of
life.

❖ The second inflection point in the acceleration curves
indicates that the dielectric response provides an
earlier warning of the beginning of material failure
than the mechanical response.

❖ The average life percentage and number of cycles
based on permittivity were 68.78% and 53655,
respectively, and based on stiffness, they were
71.74% and 59669, respectively.
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Figure 1. Damage progression in composites and relation of 
remaining strength, global stiffness with life [1] 

B. Experimental Design

❖ Specimens were subjected to quasi-static tensile loading to
determine the mean ultimate tensile strength (UTS).

❖ Fatigue tests with in-situ dielectric spectroscopy were carried out up to failure for
mean stress levels (25%, 50%, and 75% of UTS) to develop a life prediction model.

❖ A training dataset was generated for residual strength prediction from fatigue
tests for a 50% mean stress level up to predefined cycle counts.

Figure 3. Mechanical Response and Dielectric Response of Composite

Figure 2. Test Setup

Data Curation and Model Development

Figure 4. Analysis of State Variables

Figure 5. Data Curation Methodology

Hidden 
Layer Sizes 

Activation 
Function

Solver Learning 
Rate

Maximum 
Iterations

900, 200, 
800

ReLU Adam 0.0001 5000

Table 1. Tuned hyperparameters for the life prediction model 

Hidden 
Layer Sizes 

Activation 
Function

Solver Learning 
Rate

Maximum 
Iterations

58,30,77 ReLU LBFGS  0.00011 5000

Table 2. Tuned hyperparameters for the RS prediction model 

❖ Acquired dielectric and life data is divided into finite timesteps (Figure 4)

❖ Two training datasets curated for Life and RS ANN Models (ANN_1 and ANN_2)

❖ Grid search cross-validation technique was used to find optimal hyperparameters
for the models (Table 1 and 2)

❖ The framework consists of two coupled ANN
models to estimate the current life (ANN_1)
and residual strength (ANN_2) of the
specimen based on dielectric permittivity
response.

❖ ANN_1 provides full life prediction for test
specimens from dielectric data of predefined
limited cycles with average R2 value 0.9326.

❖ Performance enhances when more dielectric
data is available.

❖ The output estimated life is then passed
through the ANN_2 model, and the model
predicts the residual life of the specimen.

❖ ANN_2 predicts the residual strength with an
R2 value of 0.9613.

❖ The in situ dielectric permittivity response
can be used to determine the present
residual strength of a fatigue specimen using
this coupled ANN framework.

Figure 6. Model Performance 

(Top: ANN_1, Bottom: ANN_2)

❖ Dielectric permittivity changes can be correlated
with the initiation and propagation of damage in
the material.

❖ A novel framework using artificial neural network
algorithms to predict life and residual strength of
polymer composites under fatigue loading is
developed (Figure 7).

❖ Life prediction model can predict current and
future life span from dielectric permittivity with
high accuracy.

❖ The coupled framework can predict residual
strength of a specimen with high accuracy

❖ Optimizing statistical data curation techniques and
using deep neural network-based algorithms can
improve the method in future studies.

Figure 7. Proposed Prediction 

Framework
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